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Semantic reconstruction of continuous 
language from non-invasive brain recordings

Jerry Tang1, Amanda LeBel    2, Shailee Jain    1 & Alexander G. Huth    1,2 

A brain–computer interface that decodes continuous language from 
non-invasive recordings would have many scientific and practical 
applications. Currently, however, non-invasive language decoders can 
only identify stimuli from among a small set of words or phrases. Here we 
introduce a non-invasive decoder that reconstructs continuous language 
from cortical semantic representations recorded using functional magnetic 
resonance imaging (fMRI). Given novel brain recordings, this decoder 
generates intelligible word sequences that recover the meaning of perceived 
speech, imagined speech and even silent videos, demonstrating that a 
single decoder can be applied to a range of tasks. We tested the decoder 
across cortex and found that continuous language can be separately 
decoded from multiple regions. As brain–computer interfaces should 
respect mental privacy, we tested whether successful decoding requires 
subject cooperation and found that subject cooperation is required both 
to train and to apply the decoder. Our findings demonstrate the viability of 
non-invasive language brain–computer interfaces.

Previous brain–computer interfaces have demonstrated that speech 
articulation1 and other signals2 can be decoded from intracranial 
recordings to restore communication to people who have lost the ability 
to speak3,4. Although effective, these decoders require invasive neuro-
surgery, making them unsuitable for most other uses. Language decod-
ers that use non-invasive recordings could be more widely adopted and 
have the potential to be used for both restorative and augmentative 
applications. Non-invasive brain recordings can capture many kinds of 
linguistic information5–8, but previous attempts to decode this informa-
tion have been limited to identifying one output from among a small 
set of possibilities9–12, leaving it unclear whether current non-invasive 
recordings have the spatial and temporal resolution required to decode 
continuous language.

Here we introduce a decoder that takes non-invasive brain record-
ings made using functional magnetic resonance imaging (fMRI) and 
reconstructs perceived or imagined stimuli using continuous natural 
language. To accomplish this, we needed to overcome one major obsta-
cle: the low temporal resolution of fMRI. Although fMRI has excellent 
spatial specificity, the blood-oxygen-level-dependent (BOLD) signal 
that it measures is notoriously slow—an impulse of neural activity 

causes BOLD to rise and fall over approximately 10 s (ref. 13). For natu-
rally spoken English (over two words per second), this means that each 
brain image can be affected by over 20 words. Decoding continuous 
language thus requires solving an ill-posed inverse problem, as there 
are many more words to decode than brain images. Our decoder accom-
plishes this by generating candidate word sequences, scoring the 
likelihood that each candidate evoked the recorded brain responses 
and then selecting the best candidate.

To compare word sequences to a subject’s brain responses, we 
used an encoding model5 that predicts how the subject’s brain responds 
to natural language. We recorded brain responses while the subject 
listened to 16 h of naturally spoken narrative stories, yielding over five 
times more data than the typical language fMRI experiment. We trained 
the encoding model on this dataset by extracting semantic features that 
capture the meaning of stimulus phrases8,14–17 and using linear regres-
sion to model how the semantic features influence brain responses 
(Fig. 1a). Given any word sequence, the encoding model predicts how 
the subject’s brain would respond when hearing the sequence with 
considerable accuracy (Extended Data Fig. 1). The encoding model can 
then score the likelihood that the word sequence evoked the recorded 
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generative neural network language model20 that was trained on a large 
dataset of natural English word sequences. Given any word sequence, 
the language model predicts the words that could come next.

However, even with the constraints imposed by the language 
model, it is computationally infeasible to generate and score all 
candidate sequences. To efficiently search for the most likely word 
sequences, we used a beam search algorithm21 that generates candi-
date sequences word by word. In beam search, the decoder maintains 

brain responses by measuring how well the recorded brain responses 
match the predicted brain responses18,19.

In theory, we could identify the most likely stimulus words by com-
paring the recorded brain responses to encoding model predictions 
for every possible word sequence18,19. However, the number of possible 
word sequences is far too large for this approach to be practical, and 
the vast majority of those sequences do not resemble natural language. 
To restrict the candidate sequences to well-formed English, we used a 
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Fig. 1 | Language decoder. a, BOLD fMRI responses were recorded while three 
subjects listened to 16 h of narrative stories. An encoding model was estimated 
for each subject to predict brain responses from semantic features of stimulus 
words. b, To reconstruct language from novel brain recordings, the decoder 
maintains a set of candidate word sequences. When new words are detected, 
a language model (LM) proposes continuations for each sequence, and the 
encoding model scores the likelihood of the recorded brain responses under 
each continuation. The most likely continuations are retained. c, Decoders 
were evaluated on single-trial brain responses recorded while subjects listened 
to test stories that were not used for model training. Segments from four test 
stories are shown alongside decoder predictions for one subject. Examples were 
manually selected and annotated to demonstrate typical decoder behaviors. 
The decoder exactly reproduces some words and phrases and captures the gist 

of many more. d, Decoder predictions for a test story were significantly more 
similar to the actual stimulus words than expected by chance under a range of 
language similarity metrics (* indicates q(FDR) < 0.05 for all subjects, one-sided 
non-parametric test). To compare across metrics, results are shown as standard 
deviations away from the mean of the null distribution (Methods). Boxes indicate 
the interquartile range of the null distribution (n = 200 samples); whiskers 
indicate the 5th and 95th percentiles. e, For most timepoints, decoding scores 
were significantly higher than expected by chance (q(FDR) < 0.05, one-sided  
non-parametric test) under the BERTScore metric. f, Identification accuracy  
for one subject. The color at (i, j) reflects the similarity between the i-th second 
of the prediction and the j-th second of the actual stimulus. Identification 
accuracy was significantly higher than expected by chance (P < 0.05, one-sided 
permutation test).
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a beam containing the k most likely candidate sequences at any given 
time. When new words are detected based on brain activity in auditory 
and speech areas (Methods and Extended Data Fig. 1), the language 
model generates continuations for each sequence in the beam using 
the previously decoded words as context. The encoding model then 
scores the likelihood that each continuation evoked the recorded brain 
responses, and the k most likely continuations are retained in the beam 
for the next timestep (Fig. 1b). This process continually approximates 
the most likely stimulus words across an arbitrary amount of time.

Results
We trained decoders for three subjects and evaluated each subject’s 
decoder on separate, single-trial brain responses that were recorded while 
the subject listened to novel test stories that were not used for model train-
ing. Because our decoder represents language using semantic features 
rather than motor or auditory features, the decoder predictions should 
capture the meaning of the stimuli. Results show that the decoded word 
sequences captured not only the meaning of the stimuli but often even 
exact words and phrases, demonstrating that fine-grained semantic infor-
mation can be recovered from the BOLD signal (Fig. 1c and Supplementary 
Table 1). To quantify decoding performance, we compared decoded and 
actual word sequences for one test story (1,839 words) using several lan-
guage similarity metrics (Methods). Standard metrics such as word error 
rate (WER), BLEU and METEOR measure the number of words shared by 
two sequences. However, because different words can convey the same 
meaning—for instance, ‘we were busy’ and ‘we had a lot of work’—we also 
used BERTScore, a newer method that uses machine learning to quantify 
whether two sequences share a meaning. Story decoding performance 
was significantly higher than expected by chance under each metric but 
particularly BERTScore (q(false discovery rate (FDR)) < 0.05, one-sided 
non-parametric test; Fig. 1d; see Table 1 for raw values). Most timepoints 
in the story (72–82%) had a significantly higher BERTScore than expected 
by chance (Fig. 1e) and could be identified from other timepoints (mean 
percentile rank = 0.85–0.91) based on BERTScore similarities between 
the decoded and actual words (Fig. 1f and Extended Data Fig. 2a). We 
also tested whether the decoded words captured the original meaning 
of the story using a behavioral experiment, which showed that nine of 16 
reading comprehension questions could be answered by subjects who 
had only read the decoded words (Extended Data Fig. 3).

Decoding across cortical regions
The decoding results shown in Fig. 1 used responses from multiple corti-
cal regions to achieve good performance. We next used the decoder to 
study how language is represented within each of these regions. Although 
previous studies have demonstrated that most parts of cortex are active 

during language processing5,22–24, it is unclear which regions represent 
language at the granularity of words and phrases25, which regions are 
consistently engaged in language processing26 and whether different 
regions encode complementary27 or redundant28 language representa-
tions. To answer these questions, we partitioned brain data into three 
macro-scale cortical regions previously shown to be active during lan-
guage processing—the speech network29, the parietal-temporal-occipital 
association region23 and the prefrontal region5—and separately decoded 
from each region in each hemisphere (Fig. 2a and Extended Data Fig. 4a).

To test whether a region encodes semantic information at the 
granularity of words and phrases, we evaluated decoder predictions 
from the region using multiple language similarity metrics. Previous 
studies have decoded semantic features from BOLD responses in differ-
ent regions11, but the distributed nature of the semantic features and the 
low temporal resolution of the BOLD signal make it difficult to evaluate 
whether a region represents fine-grained words or coarser-grained cat-
egories25. Because our decoder produces interpretable word sequences, 
we can directly assess how precisely each region represents the stimulus 
words (Fig. 2b). Under the WER and BERTScore metrics, decoder pre-
dictions were significantly more similar to the actual stimulus words 
than expected by chance for all regions (q(FDR) < 0.05, one-sided 
non-parametric test). Under the BLEU and METEOR metrics, decoder 
predictions were significantly more similar to the actual stimulus words 
than expected by chance for all regions except the right hemisphere 
speech network (q(FDR) < 0.05, one-sided non-parametric test). These 
results demonstrate that multiple cortical regions represent language 
at the granularity of individual words and phrases.

Although the previous analysis quantifies how well a region rep-
resents the stimulus as a whole, it does not specify whether the region 
is consistently engaged throughout the stimulus or only active at 
certain times26. To identify regions that are consistently engaged in 
language processing, we next computed the fraction of timepoints 
that were significantly decoded from each region. We found that most 
of the timepoints that were significantly decoded from the whole 
brain could be separately decoded from the association (80–86%) 
and prefrontal (46–77%) regions (Fig. 2c and Extended Data Fig. 4b), 
suggesting that these regions consistently represent the meaning of 
words and phrases in language. Notably, only 28–59% of the timepoints 
that were significantly decoded from the whole brain could be decoded 
from the speech network. This is likely a consequence of our decoding 
framework—the speech network is known to be consistently engaged in 
language processing, but it tends to represent lower-level articulatory 
and auditory features6, whereas our decoder operates on higher-level 
semantic features of entire word sequences.

Finally, we assessed the relationship between language representa-
tions encoded in different regions. One possible explanation for our 
successful decoding from multiple regions is that different regions 
encode complementary representations—such as different parts of 
speech—in a modular organization27. If this were the case, different 
aspects of the stimulus may be decodable from individual regions, but 
the full stimulus should only be decodable from the whole brain. Alter-
natively, different regions might encode redundant representations of 
the full stimulus28. If this were the case, the same information may be 
separately decodable from multiple individual regions. To differenti-
ate these possibilities, we directly compared decoded word sequences 
across regions and hemispheres and found that the similarity between 
each pair of predictions was significantly higher than expected by 
chance (q(FDR) < 0.05, two-sided non-parametric test; Fig. 2d). This 
suggests that different cortical regions encode redundant word-level 
language representations. However, the same words could be encoded 
in different regions using different features23,30, and understanding 
the nature of these features remains an open question with important 
scientific and practical implications.

Together, our results demonstrate that the word sequences that 
can be decoded from the whole brain can also be consistently decoded 

Table 1 | Language similarity scores

WER BLEU-1 METEOR BERTScore

Null 0.9637 0.1908 0.1323 0.7899

Subject 1 0.9407 0.2331 0.1621 0.8077

Subject 2 0.9354 0.2426 0.1677 0.8104

Subject 3 0.9243 0.2470 0.1703 0.8116

Translation 0.7459 0.4363 0.3991 0.8797

Decoder predictions for a perceived story were compared to the actual stimulus words using 
a range of language similarity metrics. A floor for each metric was computed by scoring the 
mean similarity between the actual stimulus words and 200 null sequences generated from 
a language model without using any brain data. A ceiling for each metric was computed 
by manually translating the actual stimulus words into Mandarin Chinese, automatically 
translating the words back into English using a state-of-the-art machine translation system 
and scoring the similarity between the actual stimulus words and the output of the machine 
translation system. Under the BERTScore metric, the decoder—which was trained on far 
less paired data and used far noisier input—performed around 20% as well as the machine 
translation system relative to the floor.
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from multiple individual regions (Fig. 2e). A practical implication of 
this redundant coding is that future brain–computer interfaces may 
be able to attain good performance even while selectively recording 
from regions that are most accessible or intact.

Decoder applications and privacy implications
In the previous analyses, we trained and tested language decoders on 
brain responses to perceived speech. Next, to demonstrate the range of 
potential applications for our semantic language decoder, we assessed 
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Fig. 2 | Decoding across cortical regions. a, Cortical regions for one subject. 
Brain data used for decoding (colored regions) were partitioned into the speech 
network, the parietal-temporal-occipital association region and the prefrontal 
cortex (PFC) region. b, Decoder predictions from each region in each hemisphere 
were significantly more similar to the actual stimulus words than expected by 
chance under most metrics (* indicates q(FDR) < 0.05 for all subjects, one-
sided non-parametric test). Error bars indicate the standard error of the mean 
(n = 3 subjects). Boxes indicate the interquartile range of the null distribution 
(n = 200 samples); whiskers indicate the 5th and 95th percentiles. c, Decoding 
performance timecourse from each region for one subject. Horizontal lines 
indicate when decoding performance was significantly higher than expected by 
chance under the BERTScore metric (q(FDR) < 0.05, one-sided non-parametric 

test). Most of the timepoints that were significantly decoded from the whole 
brain were also significantly decoded from the association and prefrontal 
regions. d, Decoder predictions were compared across regions. Decoded word 
sequences from each pair of regions were significantly more similar  
than expected by chance (q(FDR) < 0.05, two-sided non-parametric test).  
e, Segments from a test story are shown alongside decoder predictions from each 
region in each hemisphere for one subject. Examples were manually selected 
and annotated to demonstrate typical decoder behaviors. Colors indicate 
corresponding phrases. These results demonstrate that multiple cortical regions 
encode fine-grained, consistent and redundant representations of natural 
language. Assoc, association; hem, hemisphere.
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whether language decoders trained on brain responses to perceived 
speech could be used to decode brain responses to other tasks.

Imagined speech decoding. A key task for brain–computer interfaces 
is decoding covert imagined speech in the absence of external stimuli. 
To test whether our language decoder can be used to decode imag-
ined speech, subjects imagined telling five 1-min stories while being 
recorded with fMRI and separately told the same stories outside of the 
scanner to provide reference transcripts. For each 1-min scan, we cor-
rectly identified the story that the subject was imagining by decoding 
the scan, normalizing the similarity scores between the decoder pre-
diction and the reference transcripts into probabilities and choosing 
the most likely transcript (100% identification accuracy; Fig. 3a and 
Extended Data Fig. 2b). Across stories, decoder predictions were signifi-
cantly more similar to the corresponding transcripts than expected by 
chance (P < 0.05, one-sided non-parametric test). Qualitative analysis 
shows that the decoder can recover the meaning of imagined stimuli 
(Fig. 3b and Supplementary Table 2).

For the decoder to transfer across tasks, the target task must share 
representations with the training task1,31–33. Our encoding model is 
trained to predict how a subject’s brain would respond to perceived 
speech, so the explicit goal of our decoder is to generate words that 
would evoke the recorded brain responses when heard by the subject. 
The decoder successfully transfers to imagined speech because the 
semantic representations that are activated when the subject ima-
gines a story are similar to the semantic representations that would 
have been activated had the subject heard the story. Nonetheless, 
decoding performance for imagined speech was lower than decoding 
performance for perceived speech (Extended Data Fig. 5a), which is 
consistent with previous findings that speech production and speech 
perception involve partially overlapping brain regions34. We may be 
able to achieve more precise decoding of imagined speech by replacing 
our encoding model trained on perceived speech data with an encoding 
model trained on attempted or imagined speech data4. This would give 
the decoder the explicit goal of generating words that would evoke the 
recorded brain responses when imagined by the subject.

Cross-modal decoding. Semantic representations are also shared 
between language perception and a range of other perceptual and 
conceptual processes23,35,36, suggesting that, unlike previous language 
decoders that used mainly motor1,3 or auditory2 signals, our semantic 
language decoder may be able to reconstruct language descriptions 
from brain responses to non-linguistic tasks. To test this, subjects 
watched four short films without sound while being recorded with 
fMRI, and the recorded responses were decoded using the semantic lan-
guage decoder. We compared the decoded word sequences to language 
descriptions of the films for the visually impaired (Methods) and found 
that they were significantly more similar than expected by chance 
(q(FDR) < 0.05, one-sided non-parametric test; Extended Data Fig. 5a). 
Qualitatively, the decoded sequences accurately described events from 
the films (Fig. 3c, Supplementary Table 3 and Supplementary Video 1). 
This suggests that a single semantic decoder trained during language 
perception could be used to decode a range of semantic tasks.

Attention effects on decoding. Because semantic representations are 
modulated by attention37,38, our semantic decoder should selectively 
reconstruct attended stimuli39,40. To test the effects of attention on 
decoding, subjects listened to two repeats of a multi-speaker stimulus 
that was constructed by temporally overlaying a pair of stories told by 
female and male speakers. On each presentation, subjects were cued 
to attend to a different speaker. Decoder predictions were signifi-
cantly more similar to the attended story than to the unattended story 
(q(FDR) < 0.05 across subjects, one-sided paired t-test; t(2) = 12.76 for 
the female speaker and t(2) = 7.26 for the male speaker), demonstrating 
that the decoder selectively reconstructs attended stimuli (Fig. 3d and 

Extended Data Fig. 5b). These results suggest that semantic decoders 
could perform well in complex environments with multiple sources of 
information. Moreover, these results demonstrate that subjects have 
conscious control over decoder output and suggest that semantic 
decoders can reconstruct only what subjects are actively attending to.

Privacy implications. An important ethical consideration for 
semantic decoding is its potential to compromise mental privacy41. 
To test if decoders can be trained without a person’s cooperation, 
we attempted to decode perceived speech from each subject using 
decoders trained on data from other subjects. For this analysis, we 
collected data from seven subjects as they listened to 5 h of narrative 
stories. These data were anatomically aligned across subjects using 
volumetric and surface-based methods (Methods). Decoders trained 
on cross-subject data (Extended Data Fig. 6) performed barely above 
chance and significantly worse than decoders trained on within-subject 
data (q(FDR) < 0.05, two-sided t-test). This suggests that subject  
cooperation remains necessary for decoder training (Fig. 3e, Extended 
Data Fig. 5c and Supplementary Table 4).

To test if a decoder trained with a person’s cooperation can later 
be consciously resisted, subjects silently performed three cognitive 
tasks—calculation (‘count by sevens’), semantic memory (‘name and 
imagine animals’) and imagined speech (‘tell a different story’)—while 
listening to segments from a narrative story. We found that performing 
the semantic memory (t(2) = 6.95 for the whole brain, t(2) = 4.93 for the 
speech network, t(2) = 6.93 for the association region, t(2) = 4.70 for 
the prefrontal region) and imagined speech (t(2) = 4.79 for the whole 
brain, t(2) = 4.25 for the speech network, t(2) = 3.75 for the association 
region, t(2) = 5.73 for the prefrontal region) tasks significantly lowered 
decoding performance relative to a passive listening baseline for each 
cortical region (q(FDR) < 0.05 across subjects, one-sided paired t-test). 
This demonstrates that semantic decoding can be consciously resisted 
in an adversarial scenario and that this resistance cannot be overcome 
by focusing the decoder only on specific brain regions (Fig. 3f and 
Extended Data Fig. 5d).

Sources of decoding error
To identify potential avenues for improvement, we assessed whether 
decoding error during language perception reflects limitations of the 
fMRI recordings, our models or both (Fig. 4a).

BOLD fMRI recordings typically have a low signal-to-noise ratio 
(SNR). During model estimation, the effects of noise in the training 
data can be reduced by increasing the size of the dataset. To evaluate 
if decoding performance is limited by the size of our training dataset, 
we trained decoders using different amounts of data. Decoding scores 
were significantly higher than expected by chance with just a single ses-
sion of training data, but substantially more training data were required 
to consistently decode the different parts of the test story (Extended 
Data Fig. 7 and Supplementary Table 5). Decoding scores appeared to 
increase by an equal amount each time the size of the training dataset 
was doubled (Fig. 4b). This suggests that training on more data will 
improve decoding performance, albeit with diminishing returns for 
each successive scanning session42.

Low SNR in the test data may also limit the amount of informa-
tion that can be decoded. To evaluate whether future improvements to 
single-trial fMRI SNR might improve decoding performance, we artifi-
cially increased SNR by averaging brain responses collected during dif-
ferent repeats of the test story. Decoding performance slightly increased 
with the number of averaged responses (Fig. 4c), suggesting that some 
component of the decoding error reflects noise in the test data.

Another limitation of fMRI is that current scanners are too large and 
expensive for most practical decoder applications. Portable techniques 
such as functional near-infrared spectroscopy (fNIRS) measure the same 
hemodynamic activity as fMRI, albeit at a lower spatial resolution43,44.  
To test whether our decoder relies on the high spatial resolution of 

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | May 2023 | 858–866 863

Article https://doi.org/10.1038/s41593-023-01304-9

fMRI, we smoothed our fMRI data to the estimated spatial resolution 
of current fNIRS systems and found that around 50% of the stimulus 
timepoints could still be decoded (Extended Data Fig. 8). This suggests 
that our decoding approach could eventually be adapted for portable 
systems.

Finally, to evaluate if decoding performance is limited by model 
mis-specification—such as using suboptimal features to represent lan-
guage stimuli—we tested whether the decoding error follows system-
atic patterns. We scored how well each individual word was decoded 
across six test stories (Methods) and compared the scores to behavioral 
word ratings and dataset statistics. If the decoding error were caused 
solely by noise in the test data, all words should be equally affected. 
However, we found that decoding performance was significantly cor-
related with behavioral ratings of word concreteness (rank correlation 
ρ = 0.14–0.27, q(FDR) < 0.05), suggesting that the decoder is worse at 
recovering words with certain semantic properties (Fig. 4d). Notably, 
decoding performance was not significantly correlated with word fre-
quency in the training stimuli, suggesting that model mis-specification 
is not primarily caused by noise in the training data (Fig. 4e).

Our results indicate that model mis-specification is a major source 
of decoding error separate from random noise in the training and test 
data. Assessing how the different components of the decoder contrib-
ute to this mis-specification, we found that the decoder continually 
relies on the encoding model to achieve good performance (Extended 
Data Fig. 9), and poorly decoded timepoints tend to reflect errors in 
the encoding model (Extended Data Fig. 10). We expect computational 
advances that reduce encoding model mis-specification—such as the 
development of better semantic feature extractors—to substantially 
improve decoding performance.

Discussion
This study demonstrates that the meaning of perceived and imagined 
stimuli can be decoded from the BOLD signal into continuous language, 
marking an important step for non-invasive brain–computer interfaces. 
Although previous studies have shown that the BOLD signal contains 
rich semantic information5,11, our results show that this information is 
captured at the granularity of individual words and phrases. To recon-
struct this information, our decoder relies on two innovations that 
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subjects. Identification accuracy is shown for one subject. Each row corresponds 
to a scan, and the colors reflect the similarities between the decoder prediction 
and all five reference transcripts (100% identification accuracy). b, Reference 
transcripts are shown alongside decoder predictions for three imagined stories 
for one subject. c, To test whether the language decoder can transfer across 
modalities, subjects were decoded while they watched four silent short films. 
Decoder predictions were significantly related to the films (q(FDR) < 0.05, 
one-sided non-parametric test). Frames from two scenes are shown alongside 
decoder predictions for one subject (Blender Foundation; https://www.sintel.
org (ref. 48)). d, To test whether the decoder is modulated by attention, subjects 
attended to the female speaker or the male speaker in a multi-speaker stimulus. 
Decoder predictions were significantly more similar to the attended story than to 
the unattended story (* indicates q(FDR) < 0.05 across n = 3 subjects, one-sided 

paired t-test). Markers indicate individual subjects. e, To test whether decoding 
can succeed without training data from a particular subject, decoders were 
trained on anatomically aligned brain responses from five sets of other subjects 
(indicated by markers). Cross-subject decoders performed barely above chance 
and substantially worse than within-subject decoders (* indicates q(FDR) < 0.05, 
two-sided t-test), suggesting that within-subject training data are critical.  
f, To test whether decoding can be consciously resisted, subjects silently 
performed three resistance tasks: counting, naming animals and telling a 
different story. Decoding performance was compared to a passive listening task 
(* indicates q(FDR) < 0.05 across n = 3 subjects, one-sided paired t-test). Naming 
animals and telling a different story significantly lowered decoding performance 
in each cortical region, demonstrating that decoding can be resisted. Markers 
indicate individual subjects. Different experiments cannot be compared based 
on story decoding scores, which depend on stimulus length; see Extended Data 
Fig. 5 for a comparison based on the fraction of significantly decoded timepoints. 
Assoc, association; PFC, prefrontal cortex.
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account for the combinatorial structure of language: an autoregressive 
prior is used to generate novel sequences, and a beam search algorithm 
is used to efficiently search for the best sequences. Together, these 
innovations enable the decoding of structured sequential information 
from relatively slow brain signals.

Most existing language decoders map brain activity into explicit 
motor features1 or record data from regions that encode motor repre-
sentations during overt or attempted language production3. In con-
trast, our decoder represents language using semantic features and 
primarily uses data from regions that encode semantic representations5 
during language perception2. Unlike motor representations, which are 
only accessible during attempted speech1,4, semantic representations 
are accessible during both attempted and imagined speech. Moreover, 
semantic representations are shared between language and a range 
of other cognitive tasks, and our analyses demonstrate that semantic 
decoders trained during language perception can be used to decode 
some of these other tasks. This cross-task transfer could enable novel 
decoder applications, such as covert speech translation, while reduc-
ing the need to collect separate training data for different decoder 
applications.

However, there are also advantages to decoding using motor 
features. Although our decoder successfully reconstructs the mean-
ing of language stimuli, it often fails to recover exact words (WER 
0.92–0.94 for the perceived speech test story). This high WER for 
novel stimuli is similar to out-of-set performance for existing inva-
sive decoders45—which require training on multiple repeats of the 

test stimuli before attaining a WER below 0.8—indicating that loss of 
specificity is not unique to non-invasive decoding. In our decoder, 
loss of specificity occurs when different word sequences with similar 
meanings share semantic features, causing the decoder to paraphrase 
the actual stimulus. Motor features are better able to differentiate 
between the actual stimulus and its paraphrases, as they are directly 
related to the surface form of the stimulus. Motor features may also 
give users more control over decoder output, as they are less likely to 
be correlated with semantic processes such as perception and memory. 
We may be able to improve the performance of our decoder by mod-
eling language using a combination of semantic features and motor 
features. This could make use of complementary recording methods 
such as electroencephalography (EEG) or magnetoencephalography 
(MEG), which capture precise timing information that is not captured  
by fMRI7,8.

One other important factor that may improve decoding perfor-
mance is subject feedback. Previous invasive studies have employed a 
closed-loop decoding paradigm, where decoder predictions are shown 
to the subject in real time3,4. This feedback allows the subject to adapt 
to the decoder, providing them more control over decoder output46. 
Although fMRI has lower temporal resolution than invasive methods, 
closed-loop decoding may still provide many benefits for imagined 
speech decoding.

Finally, our privacy analysis suggests that subject coopera-
tion is currently required both to train and to apply the decoder.  
However, future developments might enable decoders to bypass  

a

d e

b c

Tr
ai

n 
fr

eq
ue

nc
y 

(p
er

 10
5 )

Concreteness rating
0.1 0.50.40.3 0.6 0.90.2 0.7 0.8 1.0

100

103

101

102

0

restaurant

hair

door
night

schoolkind
get

big

ponytailoutsider

find

say

Test 
frequency
(per 105)

102

101

100

103

Word decoding score
Below chance Above chance

=

Mis-specified
features?

Insu�icient
data?

fMRI 
noise?

+Feature 
extraction

×

–2.1
0.4
1.5
0.2

3.8
–1.2
–1.6
0.5

3.3
0.6

–2.2
1.5

Decoding score correlation ρ

*

0–0.2 –0.1 0.1 0.2

Behavioral
Statistical

Word properties:

Valence

Arousal

Dominance

Duration (test)

Concreteness

LM probability (test)

Frequency (test)

Frequency (train)

Train sessions

St
or

y 
si

m
ila

rit
y 

σ

St
or

y 
si

m
ila

rit
y 

σ

20 21 22 23 24

5

25

20

10

15

0

S1 S3S2

Test repeats

5

25

20

10

15

20 21 2322
0

S1 S3S2

Fig. 4 | Sources of decoding error. a, Potential factors limiting decoding 
performance. b, To test if decoding performance is limited by the size of the 
training dataset, decoders were trained on different amounts of data. Decoding 
scores appeared to increase by an equal amount each time the size of the training 
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by model mis-specification, word-level decoding scores were compared to 
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performance was significantly correlated with word concreteness, suggesting 
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http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | May 2023 | 858–866 865

Article https://doi.org/10.1038/s41593-023-01304-9

these requirements. Moreover, even if decoder predictions are inaccu-
rate without subject cooperation, they could be intentionally misinter-
preted for malicious purposes. For these and other unforeseen reasons, 
it is critical to raise awareness of the risks of brain decoding technology 
and enact policies that protect each person’s mental privacy47.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Subjects
Data were collected from three female subjects and four male subjects: S1 
(female, age 26 years at time of most recent scan), S2 (male, age 36 years), 
S3 (male, age 23 years), S4 (female, age 23 years), S5 (female, age 23 years), 
S6 (male, age 25 years) and S7 (male, age 24 years). Data from S1, S2 and 
S3 were used for the main decoding analyses. Data from all subjects were 
used to estimate and evaluate cross-subject decoders (Fig. 3e). No statis-
tical methods were used to predetermine sample sizes, but our sample 
sizes are similar to those reported in previous publications1,3,4,18,19. No 
blinding was performed as there were no experimental groups in the fMRI 
analyses. All subjects were healthy and had normal hearing and normal 
or corrected-to-normal vision. To stabilize head motion, subjects wore a 
personalized head case that precisely fit the shape of each subject’s head. 
The experimental protocol was approved by the institutional review 
board at The University of Texas at Austin. Written informed consent was 
obtained from all subjects. Subjects were compensated at a rate of $25 
per hour. No data were excluded from analysis.

MRI data collection
MRI data were collected on a 3T Siemens Skyra scanner at the UT Austin 
Biomedical Imaging Center using a 64-channel Siemens volume coil. 
Functional scans were collected using gradient echo planar imaging 
(EPI) with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, flip 
angle = 71°, multi-band factor (simultaneous multi-slice) = 2, voxel 
size = 2.6 mm × 2.6 mm × 2.6 mm (slice thickness = 2.6 mm), matrix 
size = (84, 84) and field of view = 220 mm.

Anatomical data for all subjects except S2 were collected using a 
T1-weighted multi-echo MP-RAGE sequence on the same 3T scanner 
with voxel size = 1 mm × 1 mm × 1 mm following the FreeSurfer morpho-
metry protocol. Anatomical data for subject S2 were collected on a 3T 
Siemens TIM Trio scanner at the UC Berkeley Brain Imaging Center with 
a 32-channel Siemens volume coil using the same sequence.

Cortical regions
Whole-brain MRI data were partitioned into three cortical regions: the 
speech network, the parietal-temporal-occipital association region 
and the prefrontal region.

The speech network was functionally localized in each subject 
using an auditory localizer and a motor localizer. Auditory localizer 
data were collected in one 10-min scan. The subject listened to 10 
repeats of a 1-min auditory stimulus containing 20 s of music (Arcade 
Fire), speech (Ira Glass, This American Life) and natural sound (a bab-
bling brook). To determine whether a voxel was responsive to the audi-
tory stimulus, the repeatability of the voxel response was quantified 
using an F statistic, which was computed by taking the mean response 
across the 10 repeats, subtracting this mean response from each 
single-trial response to obtain single-trial residuals and dividing the 
variance of the single-trial residuals by the variance of the single-trial 
responses. This metric directly quantifies the amount of variance in 
the voxel response that can be explained by the mean response across 
repeats. The repeatability map was used by a human annotator to define 
the auditory cortex (AC). Motor localizer data were collected in two 
identical 10-min scans. The subject was cued to perform six different 
tasks (‘hand’, ‘foot’, ‘mouth’, ‘speak’, ‘saccade’ and ‘rest’) in a random 
order in 20-s blocks. For the ‘speak’ cue, subjects were instructed to 
self-generate a narrative without vocalization. Linear models were 
estimated to predict the response in each voxel using the six cues as 
categorical features. The weight map for the ‘speak’ feature was used 
by a human annotator to define Broca’s area and the superior ventral 
premotor (sPMv) speech area. Unlike the parietal-temporal-occipital 
association and prefrontal regions, there is broad agreement that these 
speech areas are necessary for speech perception and production. 
Most existing invasive language decoders record brain activity from 
these speech areas1,4,45.

The parietal-temporal-occipital association region and the prefron-
tal region were anatomically localized in each subject using FreeSurfer 
regions of interest (ROIs). The parietal-temporal-occipital association 
region was defined using the superiorparietal, inferiorparietal, supra-
marginal, postcentral, precuneus, superiortemporal, middletemporal, 
inferiortemporal, bankssts, fusiform, transversetemporal, entorhinal, 
temporalpole, parahippocampal, lateraloccipital, lingual, cuneus, peri-
calcarine, posteriorcingulate and isthmuscingulate labels. The prefrontal 
region was defined using the superiorfrontal, rostralmiddlefrontal, 
caudalmiddlefrontal, parsopercularis, parstriangularis, parsorbitalis, 
lateralorbitofrontal, medialorbitofrontal, precentral, paracentral, fron-
talpole, rostralanteriorcingulate and caudalanteriorcingulate labels. 
Voxels identified as part of the speech network (AC, Broca’s area and 
sPMv speech area) were excluded from the parietal-temporal-occipital 
association region and the prefrontal region. We used a functional 
definition for the speech network because previous studies have 
shown that the anatomical location of the speech network varies 
across subjects49, whereas we used anatomical definitions for the 
parietal-temporal-occipital association region and the prefrontal region 
because these regions are broad and functionally diverse.

To quantify the signal quality in a region, brain responses were 
recorded while subjects listened to 10 repeats of the test story ‘Where 
There’s Smoke’ by Jenifer Hixson from The Moth Radio Hour. We com-
puted a repeatability score for each voxel by taking the mean response 
across the 10 repeats, subtracting this mean response from each 
single-trial response to obtain single-trial residuals and dividing the 
variance of the single-trial residuals by the variance of the single-trial 
responses. This metric directly quantifies the amount of variance 
in the voxel response that can be explained by the mean response 
across repeats. The speech network had 1,106–1,808 voxels with a mean 
repeatability score of 0.123–0.245; the parietal-temporal-occipital 
association region had 4,232–4,698 voxels with a mean repeatability 
score of 0.070–0.156; and the prefrontal region had 3,177–3,929 voxels 
with a mean repeatability score of 0.051–0.140.

Experimental tasks
The model training dataset consisted of 82 5–15-min stories taken from 
The Moth Radio Hour and Modern Love (Supplementary Table 6). In each 
story, a single speaker tells an autobiographical narrative. Each story 
was played during a separate fMRI scan with a buffer of 10 s of silence 
before and after the story. These data were collected during 16 scanning 
sessions, with the first session consisting of the anatomical scan and 
localizers, and the 15 subsequent sessions each consisting of five or six 
stories. All 15 story sessions were collected for subjects S1, S2 and S3. 
The first five story sessions were collected for the remaining subjects.

Stories were played over Sensimetrics S14 in-ear piezoelectric 
headphones. The audio for each stimulus was converted to mono and 
filtered to correct for frequency response and phase errors induced 
by the headphones using calibration data provided by Sensimetrics 
and custom Python code (https://github.com/alexhuth/sensimet-
rics_filter). All stimuli were played at 44.1 kHz using the pygame library 
in Python.

Each story was manually transcribed by one listener. Certain sounds 
(for example, laughter and breathing) were also marked to improve the 
accuracy of the automated alignment. The audio of each story was then 
downsampled to 11 kHz, and the Penn Phonetics Lab Forced Aligner 
(P2FA)50 was used to automatically align the audio to the transcript. 
After automatic alignment was complete, Praat and colleagues51 was 
used to check and correct each aligned transcript manually.

The model testing dataset consisted of five different fMRI 
experiments: perceived speech, imagined speech, perceived movie, 
multi-speaker and decoder resistance. In the perceived speech experi-
ment, subjects listened to 5–15-min stories from The Moth Radio Hour, 
Modern Love and The Anthropocene Reviewed. These test stories were 
held out from model training. Each story was played during a single 
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fMRI scan with a buffer of 10 s of silence before and after the story. 
For all quantitative perceived speech analyses, we used the test story 
‘Where There’s Smoke’ by Jenifer Hixson from The Moth Radio Hour.

In the imagined speech experiment, subjects imagined telling 
1-min segments from five Modern Love stories that were held out from 
model training. Subjects learned an ID associated with each segment 
(‘alpha’, ‘bravo’, ‘charlie’, ‘delta’ and ‘echo’). Subjects were cued with 
each ID over headphones and imagined telling the corresponding 
segment from memory. Each story segment was cued twice in a single 
14-min fMRI scan, with 10 s of preparation time after each cue and 10 s 
of rest time after each segment.

In the perceived movie experiment, subjects viewed four 4–6-min 
movie clips from animated short films: ‘La Luna’ (Pixar Animation 
Studios)52, ‘Presto’ (Pixar Animation Studios)53, ‘Partly Cloudy’ (Pixar 
Animation Studios)54 and ‘Sintel’ (Blender Foundation)48. The movie 
clips were self-contained and almost entirely devoid of language. The 
original high-definition movie clips were cropped and downsampled 
to 727 × 409 pixels. Subjects were instructed to pay attention to the 
movie events. Notably, subjects were not instructed to generate an 
internal narrative. Each movie clip was presented without sound dur-
ing a single fMRI scan, with a 10-s black screen buffer before and after 
the movie clip.

In the multi-speaker experiment, subjects listened to two repeats 
of a 6-min stimulus constructed by temporally overlaying a pair of 
stories from The Moth Radio Hour told by a female and a male speaker. 
Both stories were held out from model training. The speech waveforms 
of the two stories were converted to mono and temporally overlaid. 
Subjects attended to the female speaker for one repeat and the male 
speaker for the other, with the order counterbalanced across subjects. 
Each repeat was played during a single fMRI scan with a buffer of 10 s 
of silence before and after the stimulus.

In each trial of the decoder resistance experiment, subjects were 
played one of four 80-s segments from a test story over headphones. 
Before the segment, subjects were cued to perform one of four cogni-
tive tasks (‘listen’, ‘count’, ‘name’ and ‘tell’). For the ‘listen’ cue, subjects 
were instructed to passively listen to the story segment. For the ‘count’ 
cue, subjects were instructed to count by sevens in their heads. For the 
‘name’ cue, subjects were instructed to name and imagine animals in 
their heads. For the ‘tell’ cue, subjects were instructed to tell different 
stories in their heads. For all cues, subjects were instructed not to speak 
or make any other movements. Trials were balanced such that (1) each 
task was the first to be cued for some segment and (2) each task was 
cued exactly once for every segment, resulting in a total of 16 trials. We 
conducted two 14-min fMRI scans each comprising eight trials, with 10 s 
of preparation time after each cue and 10 s of rest time after each trial.

fMRI data pre-processing
Each functional run was motion corrected using the FMRIB Linear 
Image Registration Tool (FLIRT) from FSL 5.0 (ref. 55). All volumes in 
the run were then averaged to obtain a high-quality template volume. 
FLIRT was then used to align the template volume for each run to the 
overall template, which was chosen to be the template for the first 
functional run for each subject. These automatic alignments were 
manually checked.

Low-frequency voxel response drift was identified using a 
second-order Savitzky–Golay filter with a 120-s window and then sub-
tracted from the signal. The mean response for each voxel was then sub-
tracted, and the remaining response was scaled to have unit variance.

Cortical surface reconstruction and visualization
Cortical surface meshes were generated from the T1-weighted anatomi-
cal scans using FreeSurfer56. Before surface reconstruction, anatomical 
surface segmentations were hand-checked and corrected. Blender 
was used to remove the corpus callosum and make relaxation cuts 
for flattening. Functional images were aligned to the cortical surface 

using boundary based registration (BBR) implemented in FSL. These 
alignments were manually checked for accuracy, and adjustments 
were made as necessary.

Flatmaps were created by projecting the values for each voxel onto 
the cortical surface using the ‘nearest’ scheme in pycortex57. This projec-
tion finds the location of each pixel in the flatmap in three-dimensional 
(3D) space and assigns that pixel the associated value.

Language model
Generative Pre-trained Transformer (GPT, also known as GPT-1) is a 
12-layer neural network that uses multi-head self-attention to combine 
representations of each word in a sequence with representations of 
previous words20. GPT was trained on a large corpus of books to predict 
the probability distribution over the next word sn in a sequence 
(s1, s2, ... , sn−1).

We fine-tuned GPT on a corpus comprising Reddit comments 
(over 200 million total words) and 240 autobiographical stories from 
The Moth Radio Hour and Modern Love that were not used for decoder 
training or testing (over 400,000 total words). The model was trained 
for 50 epochs with a maximum context length of 100.

GPT estimates a prior probability distribution P(S) over word 
sequences. Given a word sequence S = (s1, s2, ... , sn), GPT computes 
the probability of observing S in natural language by multiplying the 
probabilities of each word conditioned on the previous words: 
P(S) = ∏n

1 P (si|s1∶i−1)  where s1:0 is the empty sequence ∅.
GPT is also used to extract semantic features from language stim-

uli. To successfully perform the next word prediction task, GPT learns 
to extract quantitative features that capture the meaning of input 
sequences. Given a word sequence S = (s1, s2, ... , sn), the GPT hidden 
layer activations provide vector embeddings that represent the mean-
ing of the most recent word sn in context.

Encoding model
In voxel-wise modeling, quantitative features are extracted from stimu-
lus words, and regularized linear regression is used to estimate a set 
of weights that predict how each feature affects the BOLD signal in 
each voxel.

A stimulus matrix was constructed from the training stories. For 
each word–time pair (si, ti) in each story, we provided the word sequence 
(si−5, si−4, ... , si−1, si)  to the GPT language model and extracted semantic 
features of si from the ninth layer. Previous studies have shown that 
middle layers of language models extract the best semantic features 
for predicting brain responses to natural language8,14,15,17. This yields a 
new list of vector–time pairs (Mi,ti) where Mi is a 768-dimensional 
semantic embedding for si. These vectors were then resampled at times 
corresponding to the fMRI acquisitions using a three-lobe Lanczos 
filter5.

A linearized finite impulse response (FIR) model was fit to every 
cortical voxel in each subject’s brain5. A separate linear temporal filter 
with four delays (t − 1, t − 2, t − 3 and t − 4 timepoints) was fit for each of 
the 768 features, yielding a total of 3,072 features. With a TR of 2 s, this 
was accomplished by concatenating the feature vectors from 2 s, 4 s, 6 s 
and 8 s earlier to predict responses at time t. Taking the dot product of 
this concatenated feature space with a set of linear weights is function-
ally equivalent to convolving the original stimulus vectors with linear 
temporal kernels that have non-zero entries for 1-, 2-, 3- and 4-timepoint 
delays. Before doing regression, we first z-scored each feature channel 
across the training matrix. This was done to match the features to the 
fMRI responses, which were z-scored within each scan.

The 3,072 weights for each voxel were estimated using 
L2-regularized linear regression5. The regression procedure has a 
single free parameter that controls the degree of regularization. This 
regularization coefficient was found for each voxel in each subject by 
repeating a regression and cross-validation procedure 50 times. In 
each iteration, approximately a fifth of the timepoints were removed 
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from the model training dataset and reserved for validation. Then, the 
model weights were estimated on the remaining timepoints for each 
of 10 possible regularization coefficients (log spaced between 10 and 
1,000). These weights were used to predict responses for the reserved 
timepoints, and then R2 was computed between actual and predicted 
responses. For each voxel, the regularization coefficient was chosen as 
the value that led to the best performance, averaged across bootstraps, 
on the reserved timepoints. The 10,000 cortical voxels with the highest 
cross-validation performance were used for decoding.

The encoding model estimates a function ̂R  that maps from 
semantic features S to predicted brain responses ̂R (S). Assuming that 
BOLD signals are affected by Gaussian additive noise, the likelihood of 
observing brain responses R given semantic features S can be modeled 
as a multivariate Gaussian distribution P(R|S) with mean μ = ̂R (S)  and 
covariance ∑= ⟨(R − ̂R(S))

T
(R − ̂R(S))⟩  (ref. 19). Previous studies esti-

mated the noise covariance ∑ using the residuals between the predicted 
responses and the actual responses to the training dataset19. However, 
this underestimates the actual noise covariance, because the encoding 
model learns to predict some of the noise in the training dataset during 
model estimation. To avoid this issue, we estimated ∑ using a bootstrap 
procedure. Each story was held out from the model training dataset, 
and an encoding model was estimated using the remaining data. A 
bootstrap noise covariance matrix for the held-out story was computed 
using the residuals between the predicted responses and the actual 
responses to the held-out story. We estimated ∑ by averaging the boot-
strap noise covariance matrices across held-out stories.

All model fitting and analysis was performed using custom 
software written in Python, making heavy use of NumPy58, SciPy59, 
PyTorch60, Transformers61 and pycortex57.

Word rate model
A word rate model was estimated for each subject to predict when 
words were perceived or imagined. The word rate at each fMRI acquisi-
tion was defined as the number of stimulus words that occurred since 
the previous acquisition. Regularized linear regression was used to 
estimate a set of weights that predict the word rate w from the brain 
responses R. To predict word rate during perceived speech, brain 
responses were restricted to the auditory cortex. To predict word rate 
during imagined speech and perceived movies, brain responses were 
restricted to Broca’s area and the sPMv speech area. A separate linear 
temporal filter with four delays (t + 1, t + 2, t + 3 and t + 4) was fit for 
each voxel. With a TR of 2 s, this was accomplished by concatenating 
the responses from 2 s, 4 s, 6 s and 8 s later to predict the word rate at 
time t. Given novel brain responses, this model predicts the word rate 
at each acquisition. The time between consecutive acquisitions (2 s) is 
then evenly divided by the predicted word rates (rounded to the nearest 
non-negative integers) to predict word times.

Beam search decoder
Under Bayes’ theorem, the distribution P(S|R) over word sequences 
given brain responses can be factorized into a prior distribution P(S) 
over word sequences and an encoding distribution P(R|S) over brain 
responses given word sequences. Given novel brain responses Rtest, 
the most likely word sequence Stest could theoretically be identified by 
evaluating P(S)—with the language model—and P(Rtest|S)—with the sub-
ject’s encoding model—for all possible word sequences S. However, the 
combinatorial structure of natural language makes it computationally 
infeasible to evaluate all possible word sequences. Instead, we approxi-
mated the most likely word sequence using a beam search algorithm21.

The decoder maintains a beam containing the k most likely word 
sequences. The beam is initialized with an empty word sequence. When 
new words are detected by the word rate model, the language model 
generates continuations for each candidate S in the beam. The language 
model uses the last 8 s of predicted words (sn−i, ... , sn−1)  in the candi-
date to predict the distribution P (sn|sn−i, ... , sn−1)  over the next word. 

The decoder does not have access to the actual stimulus words. The 
probability distribution over the decoder vocabulary—which consists 
of the 6,867 unique words that occurred at least twice in the encoding 
model training dataset—was rescaled to sum to 1. Nucleus sampling62 
is used to identify words that belong to the top p percent of the prob-
ability mass and have a probability within a factor r of the most likely 
word. Content words that occur in the language model input 
(sn−i, ... , sn−1) are filtered out, as language models have been shown to 
be biased toward such words. Each word in the remaining nucleus is 
appended to the candidate to form a continuation C.

The encoding model scores each continuation by the likelihood 
P (Rtest|C ) of observing the recorded brain responses. The k most likely 
continuations across all candidates are retained in the beam. To 
increase beam diversity, we accept a maximum of five continuations 
for each candidate. To increase linguistic coherence, the number of 
accepted continuations for a candidate is determined by the probabil-
ity of the candidate under the language model. Candidates in the top 
quintile under P(S) are permitted the maximum five continuations. 
Candidates in the next quintile are permitted four continuations and 
so on, with candidates in the bottom quintile permitted one  
continuation. After iterating through all of the predicted word times, 
the decoder outputs the candidate sequence with the highest 
likelihood.

Bayesian decoders have previously been used to decode perceived 
images and videos18,19. Our decoder differs from existing Bayesian 
decoders in two important ways. First, existing Bayesian decoders col-
lect a large empirical prior of images or videos and only compute P(R|S) 
for stimuli in the empirical prior. The decoder prediction is obtained 
by choosing the most likely stimulus or taking a weighted combination 
of the stimuli. In contrast, our decoder uses a generative language 
model prior, which can produce completely novel sequences. Second, 
existing Bayesian decoders evaluate all stimuli in the empirical prior. 
In contrast, our decoder uses a beam search algorithm to efficiently 
search the combinatorial space of possible sequences, so the words 
that are evaluated at each point in time depend on the words that 
were previously decoded. Together, these two innovations enable our 
decoder to efficiently reconstruct structured sequential information.

Decoder parameters
The decoder has several parameters that affect model performance. 
The beam search algorithm is parameterized by the beam width k. The 
encoding model is parameterized by the number of context words pro-
vided when extracting GPT embeddings. The noise model is parameter-
ized by a shrinkage factor α that regularizes the covariance ∑. Language 
model parameters include the length of the input context, the nucleus 
mass p and ratio r and the set of possible output words.

In preliminary analyses, we found that decoding performance 
increased with the beam width but plateaued after k = 200, so we used 
a beam width of 200 sequences for all analyses. All other parameters 
were tuned by grid search and by hand on data collected as subject S3 
listened to a calibration story separate from the training and test stories 
(‘From Boyhood to Fatherhood’ by Jonathan Ames from The Moth Radio 
Hour). We decoded the calibration story using each configuration of 
parameters. The best-performing parameter values were validated 
and adjusted through qualitative analysis of decoder predictions. The 
parameters that had the largest effect on decoding performance were 
the nucleus ratio r and the noise model shrinkage α. Setting r to be too 
small makes the decoder less linguistically coherent, whereas setting 
r to be too large makes the decoder less semantically correct. Setting 
α to be too small overestimates the actual noise covariance, whereas 
setting α to be too large underestimates the actual noise covariance; 
both make the decoder less semantically correct. The parameter val-
ues used in this study provide a default decoder configuration but, in 
practice, can be tuned separately and continually for each subject to 
improve performance.
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To ensure that our results generalize to new subjects and stimuli, 
we restricted all pilot analyses to data collected as subject S3 listened 
to the test story ‘Where There’s Smoke’ by Jenifer Hixson from The Moth 
Radio Hour. All pilot analyses on the test story were qualitative. We froze 
the analysis pipeline before we viewed any results for the remaining 
subjects, stimuli and experiments.

Language similarity metrics
Decoded word sequences were compared to reference word sequences 
using a range of automated metrics for evaluating language similar-
ity. WER computes the number of edits (word insertions, deletions 
or substitutions) required to change the predicted sequence into 
the reference sequence. BLEU63 computes the number of predicted 
n-grams that occur in the reference sequence (precision). We used the 
unigram variant BLEU-1. METEOR64 combines the number of predicted 
unigrams that occur in the reference sequence (precision) with the 
number of reference unigrams that occur in the predicted sequence 
(recall) and accounts for synonymy and stemming using external data-
bases. BERTScore65 uses a bidirectional transformer language model 
to represent each word in the predicted and reference sequences as a 
contextualized embedding and then computes a matching score over 
the predicted and reference embeddings. We used the recall variant 
of BERTScore with inverse document frequency (IDF) importance 
weighting computed across stories in the training dataset. BERTScore 
was used for all analyses where the language similarity metric is  
not specified.

For the perceived speech, multi-speaker and decoder resistance 
experiments, stimulus transcripts were used as reference sequences. 
For the imagined speech experiment, subjects told each story segment 
out loud outside of the scanner, and the audio was recorded and manu-
ally transcribed to provide reference sequences. For the perceived 
movie experiment, official audio descriptions from Pixar Animation 
Studios were manually transcribed to provide reference sequences 
for three movies. To compare word sequences decoded from different 
cortical regions (Fig. 2d), each sequence was scored using the other as 
reference, and the scores were averaged (prediction similarity).

We scored the predicted and reference words within a 20-s window 
around every second of the stimulus (window similarity). Scores were 
averaged across windows to quantify how well the decoder predicted 
the full stimulus (story similarity).

To estimate a ceiling for each metric, we had the perceived speech 
test story ‘Where There’s Smoke’ translated into Mandarin Chinese by 
a professional translator. The translator was instructed to preserve all 
of the details of the story in the correct order. We then translated the 
story back into English using a state-of-the-art machine translation 
system. We scored the similarity between the original story words and 
the output of the machine translation system. These scores provide a 
ceiling for decoding performance, because modern machine trans-
lation systems are trained on large amounts of paired data, and the 
Mandarin Chinese translation contains virtually the same information 
as the original story words.

To test whether perceived speech timepoints can be identified 
using decoder predictions, we performed a post hoc identification 
analysis using similarity scores between the predicted and reference 
sequences. We constructed a matrix M where Mij reflects the similar-
ity between the i-th predicted window and the j-th reference window. 
For each timepoint i, we sorted all of the reference windows by their 
similarity to the i-th predicted window and scored the timepoint by 
the percentile rank of the i-th reference window. The mean percentile 
rank for the full stimulus was obtained by averaging percentile ranks 
across timepoints.

To test whether imagined speech scans can be identified using 
decoder predictions, we performed a post hoc identification analysis 
using similarity scores between the predicted and reference sequences. 
For each scan, we normalized the similarity scores between the decoder 

prediction and the five reference transcripts into probabilities. We 
computed top-1 accuracy by assessing whether the decoder prediction 
for each scan was most similar to the correct transcript. We observed 
100% top-1 accuracy for each subject. We computed cross-entropy for 
each scan by taking the negative logarithm (base 2) of the probability of 
the correct transcript. We observed a mean cross-entropy of 0.23–0.83 
bits. A perfect decoder would have a cross-entropy of 0 bits, and a 
chance-level decoder would have a cross-entropy of log2(5) = 2.32 bits.

Statistical testing
To test statistical significance of the word rate model, we computed 
the linear correlation between the predicted and the actual word rate 
vectors across a test story and generated 2,000 null correlations by 
randomly shuffling 10-TR segments of the actual word rate vector. We 
compared the observed linear correlation to the null distribution using 
a one-sided permutation test; P values were computed as the fraction 
of shuffles with a linear correlation greater than or equal to than the 
observed linear correlation.

To test statistical significance of the decoding scores, we gener-
ated null sequences by sampling from the language model without 
using any brain data except to predict word times. We separately evalu-
ated the word rate model and the decoding scores because the language 
similarity metrics used to compute the decoding scores are affected 
by the number of words in the predicted sequences. By generating null 
sequences with the same word times as the predicted sequence, our 
test isolates the ability of the decoder to extract semantic information 
from the brain data. To generate null sequences, we followed the same 
beam search procedure as the actual decoder. The null model maintains 
a beam of 10 candidate sequences and generates continuations from 
the language model nucleus62 at each predicted word time. The only dif-
ference between the actual decoder and the null model is that, instead 
of ranking the continuations by the likelihood of the fMRI data, the 
null model randomly assigns a likelihood to each continuation. After 
iterating through all of the predicted word times, the null model out-
puts the candidate sequence with the highest likelihood. We repeated 
this process 200 times to generate 200 null sequences. This process 
is as similar as possible to the actual decoder without using any brain 
data to select words, so these sequences reflect the null hypothesis 
that the decoder does not recover meaningful information about the 
stimulus from the brain data. We scored the null sequences against the 
reference sequence to produce a null distribution of decoding scores. 
We compared the observed decoding scores to this null distribution 
using a one-sided non-parametric test; P values were computed as the 
fraction of null sequences with a decoding score greater than or equal 
to the observed decoding score.

To check that the null scores are not trivially low, we compared 
the similarity scores between the reference sequence and the 200 null 
sequences to the similarity scores between the reference sequence and 
the transcripts of 62 other narrative stories. We found that the mean 
similarity between the reference sequence and the null sequences 
was higher than the mean similarity between the reference sequence 
and the other story transcripts, indicating that the null scores are not 
trivially low.

To test statistical significance of the post hoc identification analy-
sis, we randomly shuffled 10-row blocks of the similarity matrix M 
before computing mean percentile ranks. We evaluated 2,000 shuffles 
to obtain a null distribution of mean percentile ranks. We compared 
the observed mean percentile rank to this null distribution using a 
one-sided permutation test; P values were computed as the fraction 
of shuffles with a mean percentile rank greater than or equal to than 
the observed mean percentile rank.

Unless otherwise stated, all tests were performed within each sub-
ject and then replicated across all subjects (n = 7 for the cross-subject 
decoding analysis shown in Fig. 3e, n = 3 for all other analyses). All 
tests were corrected for multiple comparisons when necessary using 
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the FDR66. Data distributions were assumed to be normal, but this was 
not formally tested due to our small-n study design. Distributions of 
individual data points used in t-tests are shown in Fig. 3d–f. The range 
across subjects was reported for all quantitative results.

Behavioral comprehension assessment
To assess the intelligibility of decoder predictions, we conducted an 
online behavioral experiment to test whether other people could 
answer multiple-choice questions about a stimulus story using just 
a subject’s decoder predictions (Extended Data Fig. 3). We chose 
four 80-s segments of the perceived speech test story on the basis 
of being relatively self-contained. For each segment, we wrote four 
multiple-choice questions about the actual stimulus without look-
ing at the decoder predictions. To further ensure that the questions 
were not biased toward the decoder predictions, the multiple-choice 
answers were written by a separate researcher who had never seen the 
decoder predictions.

The experiment was presented as a Qualtrics questionnaire. We 
recruited 100 online subjects (50 female, 49 male and 1 non-binary) 
between the ages of 19 years and 70 years over Prolific and randomly 
assigned them to experimental and control groups. Researchers and 
participants were blinded to group assignment. For each segment, 
the experimental group subjects were shown the decoded words from 
subject S3, whereas the control group subjects were shown the actual 
stimulus words. Control group participants were expected to perform 
close to ceiling accuracy, so we determined a priori that a sample size of 
100 provides sufficient power to detect significance differences with 
test accuracies as high as 70% (G*Power67, exact test of proportions with 
independent groups). The words for each segment and the correspond-
ing multiple-choice questions were shown together on a single page 
of the Qualtrics questionnaire. Segments were shown in story order. 
Back button functionality was disabled, so subjects were not allowed 
to change their answers for previous segments after seeing a new seg-
ment. The experimental protocol was approved by the institutional 
review board at The University of Texas at Austin. Informed consent 
was obtained from all subjects. Participants were paid $4 to complete 
the questionnaire, corresponding to an average rate of $24 per hour. 
No data were excluded from analysis.

Sources of decoding error
To test if decoding performance is limited by the size of our training 
dataset, we trained decoders on different amounts of data. Decoding 
scores appeared to linearly increase each time the size of the train-
ing dataset was doubled. To test if the diminishing returns of adding 
training data are due to the fact that decoders were trained on overlap-
ping samples of data, we used a simulation to compare how decoders 
would perform when trained on non-overlapping and overlapping 
samples of data. We used the actual encoding model and the actual 
noise model to simulate brain responses to 36 sessions of training 
stories. We obtained non-overlapping samples of 3, 7, 11 and 15 ses-
sions by taking sessions 1 through 3, 4 through 10, 11 through 21 and 22 
through 36. We obtained overlapping samples of 3, 7, 11 and 15 sessions 
by taking sessions 1 through 3, 1 through 7, 1 through 11 and 1 through 
15. We trained decoders on these simulated datasets and found that the 
relationship between decoding scores and the number of training ses-
sions was very similar for the non-overlapping and overlapping datasets 
(Supplementary Fig. 1). This suggests that the observed diminishing 
returns of adding training data are not due to the fact that decoders 
were trained on overlapping samples of data.

To test if decoding performance relies on the high spatial resolu-
tion of fMRI, we spatially smoothed the fMRI data by convolving each 
image with a 3D Gaussian kernel (Extended Data Fig. 8). We tested 
Gaussian kernels with standard deviations of 1, 2, 3, 4 and 5 voxels, 
corresponding to 6.1 mm, 12.2 mm, 18.4 mm, 24.5 mm and 30.6 mm full 
width at half maximum (FWHM). We estimated the encoding model, 

noise model and word rate model on spatially smoothed perceived 
speech training data and evaluated the decoder on spatially smoothed 
perceived speech test data.

To test if decoding performance is limited by noise in the test data, 
we artificially raised the SNR of the test responses by averaging across 
repeats of a test story.

To test if decoding performance is limited by model mis- 
specification, we quantified word-level decoding performance by 
representing words using 300-dimensional GloVe embeddings68. 
We considered a 10-s window centered around each stimulus word. 
We computed the maximum linear correlation between the stimulus 
word and the predicted words in the window. Then, for each of the 
200 null sequences, we computed the maximum linear correlation 
between the stimulus word and the null words in the window. The 
match score for the stimulus word was defined as the number of null 
sequences with a maximum correlation less than the maximum cor-
relation of the predicted sequence. Match scores above 100 indicate 
higher decoding performance than expected by chance, whereas 
match scores below 100 indicate lower decoding performance than 
expected by chance. Match scores were averaged across all occur-
rences of a word in six test stories. The word-level match scores were 
compared to behavioral ratings of valence (pleasantness), arousal 
(intensity of emotion), dominance (degree of exerted control) and 
concreteness (degree of sensory or motor experience)69,70. Each set 
of behavioral ratings was linearly rescaled to be between 0 and 1. 
The word-level match scores were also compared to word duration 
in the test dataset, language model probability in the test data-
set (which corresponds to the information conveyed by a word)71,  
word frequency in the test dataset and word frequency in the train-
ing dataset.

Decoder ablations
When the word rate model detects new words, the language model pro-
poses continuations using the previously predicted words as autore-
gressive context, and the encoding model ranks the continuations 
using the fMRI data. To understand the relative contributions of the 
autoregressive context and the fMRI data to decoding performance, 
we evaluated decoders on perceived speech data in the absence of each 
component (Extended Data Fig. 9). We performed the standard decod-
ing approach up to a cutoff point in the perceived speech test story. 
After the cutoff, we either reset the autoregressive context or removed 
the fMRI data. To reset the autoregressive context, we discarded all of 
the candidate sequences and re-initialized the beam with an empty 
sequence. We then performed the standard decoding approach for the 
remainder of the scan. To remove the fMRI data, we assigned random 
likelihoods (rather than encoding model likelihoods) to continuations 
for the remainder of the scan.

Isolated encoding model and language model scores
In practice, the decoder uses the previously predicted words to pre-
dict the next word. This use of autoregressive context causes errors 
to propagate between the encoding model and the language model, 
making it difficult to attribute errors to one component or the other. To 
isolate errors introduced by each component, we separately evaluated 
the decoder components on the perceived speech test story using the 
actual, rather than the predicted, stimulus words as context (Extended 
Data Fig. 10). At each word time t, we provided the encoding model 
and the language model with the actual stimulus word as well as 100 
randomly sampled distractor words.

To evaluate how well the word at time t can be decoded using 
the encoding model, we used the encoding model to rank the actual 
stimulus word and the 100 distractor words based on the likelihood 
of the recorded responses. We computed an isolated encoding model 
score based on the number of distractor words ranked below the actual 
word. Because the encoding model scores are independent from errors 
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in the language model and the autoregressive context, they provide 
a ceiling for how well each word can be decoded from the fMRI data.

To evaluate how well the word at time t can be generated using 
the language model, we used the language model to rank the actual 
stimulus word and the 100 distractor words based on their probability 
given the previous stimulus words. We computed an isolated language 
model score based on the number of distractor words ranked below 
the actual word. Because the language model scores are independent 
from errors in the encoding model and the autoregressive context, 
they provide a ceiling for how well each word can be generated by the 
language model.

For both the isolated encoding model and the language 
model scores, 100 indicates perfect performance, and 50 indicates 
chance-level performance. The isolated encoding model and language 
scores were computed for each word. To compare against the full 
decoding scores from Fig. 1e, the word-level scores were averaged 
across 20-s windows of the stimulus.

Anatomical alignment
To test if decoders could be estimated without any training data from 
a target subject, volumetric55 and surface-based72 methods were used 
to anatomically align training data from separate source subjects into 
the volumetric space of the target subject.

For volumetric alignment, we used the get_mnixfm function in 
pycortex to compute a linear map from the volumetric space of each 
source subject to the MNI template space. This map was applied to 
recorded brain responses for each training story using the transform_
to_mni function in pycortex. We then used the transform_mni_to_subject 
function in pycortex to map the responses in MNI152 space to the volu-
metric space of the target subject. We z-scored the response timecourse 
for each voxel in the volumetric space of the target subject.

For surface-based alignment, we used the get_mri_surf2surf_matrix 
function in pycortex to compute a map from the surface vertices of each 
source subject to the surface vertices of the target subject. This map 
was applied to the recorded brain responses for each training story. 
We then mapped the surface vertices of the target subject into the 
volumetric space of the target subject using the line-nearest scheme 
in pycortex. We z-scored the response timecourse for each voxel in the 
volumetric space of the target subject.

We used a bootstrap procedure to sample five sets of source 
subjects for the target subject. Each source subject independently 
produced aligned responses for the target subject. To estimate 
the encoding model and word rate model, we averaged the aligned 
responses across the source subjects. For the word rate model, we 
localized the speech network of the target subject by anatomically 
aligning the speech networks of the source subjects. To estimate the 
noise model ∑, we used aligned responses from a single, randomly 
sampled source subject to compute the bootstrap noise covariance 
matrix for each held-out training story. The cross-subject decoders 
were evaluated on actual responses recorded from the target subject.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data collected during the decoder resistance experiment are available 
upon reasonable request but were not publicly released due to concern 
that the data could be used to discover ways to bypass subject resist-
ance. All other data are available at https://openneuro.org/datasets/
ds003020 and https://openneuro.org/datasets/ds004510.

Code availability
Custom decoding code is available at https://github.com/HuthLab/
semantic-decoding.
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Extended Data Fig. 1 | Encoding model and word rate model performance. 
The two decoder components that interface with fMRI data are the encoding 
model and the word rate model. (a) Encoding models were evaluated by 
predicting brain responses to the perceived speech test story and computing the 
linear correlation between the predicted responses and the actual single-trial 
responses. Correlations for subject S3 were projected onto a cortical flatmap. 
The encoding model successfully predicted brain responses in most cortical 
regions outside of primary sensory and motor areas. (b) Encoding models 
were trained on different amounts of data. To summarize encoding model 
performance across cortex, correlations were averaged across the 10,000 voxels 
used for decoding. Encoding model performance increased with the amount 
of training data collected from each subject. (c) Encoding models were tested 
on brain responses that were averaged across different repeats of the perceived 
speech test story to artificially increase the signal-to-noise ratio (SNR). Encoding 

model performance increased with the number of averaged responses. (d) Word 
rate models were trained on different amounts of data. Word rate models were 
evaluated by predicting the word rate of a test story and computing the linear 
correlation between the predicted and the actual word rate vectors. Word rate 
model performance slightly increased with the amount of training data collected 
from each subject. (e) For brain responses to perceived speech, word rate models 
fit on auditory cortex significantly outperformed word rate models fit on  
frontal speech production areas or randomly sampled voxels (* indicates 
q(FDR) < 0.05 across n = 3 subjects, two-sided paired t-test). (f) For brain 
responses to imagined speech, there were no significant differences in 
performance for word rate models fit on different cortical regions. For all results, 
black lines indicate the mean across subjects and error bars indicate the standard 
error of the mean (n = 3).
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Extended Data Fig. 2 | Perceived and imagined speech identification 
performance. Language decoders were trained for subjects S1 and S2 on fMRI 
responses recorded while the subjects listened to narrative stories. (a) The 
decoders were evaluated on single-trial fMRI responses recorded while the 
subjects listened to the perceived speech test story. The color at (i, j) reflects the 
BERTScore similarity between the ith second of the decoder prediction and the 
jth second of the actual stimulus. Identification accuracy was significantly higher 
than expected by chance (P < 0.05, one-sided permutation test). Corresponding 
results for subject S3 are shown in Fig. 1f in the main text. (b) The decoders were 

evaluated on single-trial fMRI responses recorded while the subjects imagined 
telling five 1-minute test stories twice. Decoder predictions were compared to 
reference transcripts that were separately recorded from the same subjects. Each 
row corresponds to a scan, and the colors reflect the similarities between the 
decoder prediction and all five reference transcripts. For each scan, the decoder 
prediction was most similar to the reference transcript of the correct story (100% 
identification accuracy). Corresponding results for subject S3 are shown in  
Fig. 3a in the main text.
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Extended Data Fig. 3 | Behavioral assessment of decoder predictions. Four 
80 s segments were chosen from the perceived speech test story. For each 
segment, four multiple-choice questions were written based on the actual 
stimulus words without looking at the decoder predictions (Supplementary 
Table 7). 100 subjects were recruited for an online behavioral experiment and 
randomly assigned to experimental and control groups. For each segment, the 
experimental group subjects answered the questions after reading the decoded 

words from subject S3, while the control group subjects answered the questions 
after reading the actual stimulus words (see Methods). (a) Experimental group 
scores were significantly higher than expected by chance for 9 out of the 16 
questions (* indicates q(FDR) < 0.05, two-sided binomial test). Error bars indicate 
the bootstrap standard error (n = 1,000 samples). (b) The decoded words and 
the actual stimulus words for a segment. (c) The multiple-choice questions cover 
different aspects of the stimulus story.
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Extended Data Fig. 4 | Decoding across cortical regions. Cortical regions 
for subjects S1 and S2. (a) Brain data used for decoding (colored regions) were 
partitioned into the speech network, the parietal-temporal-occipital association 
region, and the prefrontal region (PFC). (b) Decoding performance time-course 
for the perceived speech test story from each region. Horizontal lines indicate 

when decoder predictions were significantly more similar to the actual stimulus 
words than expected by chance under the BERTScore metric (q(FDR) < 0.05,  
one-sided nonparametric test). Corresponding results for subject S3 are shown in  
Fig. 2a,c in the main text.
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Extended Data Fig. 5 | Comparison of decoding performance across 
experiments. Decoder predictions from different experiments were compared 
based on the fraction of significantly decoded time-points under the BERTScore 
metric (q(FDR) < 0.05). The fraction of significantly decoded time-points was 
used because it does not depend on the length of the stimuli. (a) The decoder 
successfully recovered 72–82% of time-points during perceived speech, 41–74% 
of time-points during imagined speech, and 21–45% of time-points during 
perceived movies. (b) During a multi-speaker stimulus, the decoder successfully 
recovered 42–68% of time-points told by the female speaker when subjects 
attended to the female speaker, 0–1% of time-points told by the female speaker 
when subjects attended to the male speaker, 63–75% of time-points told by the 

male speaker when subjects attended to the male speaker, and 0–3% of time-
points told by the male speaker when subjects attended to the female speaker.  
(c) During a perceived story, within-subject decoders successfully recovered  
65–82% of time-points, volumetric cross-subject decoders successfully 
recovered 1–2% of time-points, and surface-based cross-subject decoders 
successfully recovered 1–5% of time-points. (d) During a perceived story, within-
subject decoders successfully recovered 52–57% of time-points when subjects 
passively listened, 4–50% of time-points when subjects resisted by counting 
by sevens, 0–3% of time-points when subjects resisted by naming animals, and 
1–26% of time-points when subjects resisted by imagining a different story.
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Extended Data Fig. 6 | Cross-subject encoding model and word rate model 
performance. For each subject, encoding models and word rate models were 
trained on anatomically aligned brain responses from 5 sets of other subjects 
(indicated by markers). The models were evaluated on within-subject single-trial 
responses to the perceived speech test story. (a) Cross-subject encoding models 

performed significantly worse than within-subject encoding models  
(* indicates q(FDR) < 0.05, two-sided t-test). (b) Cross-subject word rate  
models performed significantly worse than within-subject word rate models  
(* indicates q(FDR) < 0.05, two-sided t-test).
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Extended Data Fig. 7 | Decoding performance as a function of training 
data. Decoders were trained on different amounts of data and evaluated on the 
perceived speech test story. (a) The fraction of significantly decoded time-points 
increased with the amount of training data collected from each subject but 
plateaued after 7 scanning sessions (7.5 h) and did not substantially increase up 
to 15 sessions (16 h). The substantial increase up to 7 scanning sessions suggests 
that decoders can recover certain semantic concepts after training on a small 

amount of data, but require much more training data to achieve consistently 
good performance across the test story. (b) The mean identification percentile 
rank increased with the amount of training data collected from each subject but 
plateaued after 7 scanning sessions (7.5 h) and did not substantially increase up to 
15 sessions (16 h). For all results, black lines indicate the mean across subjects and 
error bars indicate the standard error of the mean (n = 3).
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Extended Data Fig. 8 | Decoding performance at lower spatial resolutions. 
While fMRI provides high spatial resolution, current MRI scanners are too large 
and expensive for most practical decoder applications. Portable alternatives 
like functional near-infrared spectroscopy (fNIRS) measure the same 
hemodynamic activity as fMRI, albeit at a lower spatial resolution. To simulate 
how the decoder would perform at lower spatial resolutions, fMRI data were 
spatially smoothed using Gaussian kernels with standard deviations of 1, 2, 3, 
4, and 5 voxels, corresponding to 6.1, 12.2, 18.4, 24.5, and 30.6 mm full width 
at half maximum (FWHM). The encoding model, noise model, and word rate 
model were estimated on spatially smoothed training data, and the decoder was 
evaluated on spatially smoothed responses to the perceived speech test story. 
(a) fMRI images for each subject were spatially smoothed using progressively 
larger Gaussian kernels. Blue voxels have above average activity and red voxels 
have below average activity. (b) Story similarity decreased as the data were 

spatially smoothed, but remained high at moderate levels of smoothing. (c) The 
fraction of significantly decoded time-points decreased as the data were spatially 
smoothed, but remained high at moderate levels of smoothing. (d) Encoding 
model prediction performance increased as the data were spatially smoothed, 
demonstrating that decoding performance and encoding model performance 
are not perfectly coupled. While spatial smoothing reduces information, making 
it harder to decode the stimulus, it also reduces noise, making it easier to predict 
the responses. For all results, black lines indicate the mean across subjects and 
error bars indicate the standard error of the mean (n = 3). Dashed gray lines 
indicate the estimated spatial resolution of current portable systems43. These 
results show that around 50% of the stimulus time-points could still be decoded 
at the estimated spatial resolution of current portable systems, and provide a 
benchmark for how much portable systems need to improve to reach different 
levels of decoding performance.
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Extended Data Fig. 9 | Decoder ablations. To decode new words, the decoder 
uses both the autoregressive context (that is the previously decoded words) and 
the fMRI data. To understand the relative contributions of the autoregressive 
context and the fMRI data, decoders were evaluated in the absence of each 
component. The standard decoding approach was performed up to a cutoff point 
in the perceived speech test story. After the cutoff, either the autoregressive 
context was reset or the fMRI data were removed. To reset the autoregressive 
context, all of the candidate sequences were discarded and the beam was re-
initialized with an empty sequence. The standard decoding approach was then 
performed for the remainder of the scan. To remove the fMRI data, continuations 
were assigned random likelihoods rather than encoding model likelihoods 
for the remainder of the scan. (a) A cutoff point was defined 300 s into the 
stimulus for one subject. When the autoregressive context was reset, decoding 
performance fell but quickly rebounded. When the fMRI data were removed, 

decoding performance quickly fell to chance level. The gray shaded region 
indicates the 5th to 95th percentiles of the null distribution. (b) The ablations 
were repeated for cutoff points at every 50 s of the stimulus. The performance 
differences between the original decoder and the ablated decoders were 
averaged across cutoff points and subjects, yielding profiles of how decoding 
performance changes after each component is ablated. The blue and purple 
shaded regions indicate the standard error of the mean (n = 27 trials). These 
results demonstrate that the decoder continually relies on the encoding model 
and the fMRI data to achieve good performance, and does not require good initial 
context. In these figures, each time-point was scored based on the 20 s window 
ending at that time-point, whereas in all other figures, each time-point was 
scored based on the 20 s window centered around that time-point. This shifted 
indexing scheme emphasizes how decoding performance changes after a cutoff. 
Dashed gray lines indicate cutoff points.
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Extended Data Fig. 10 | Isolated encoding model and language model scores. 
The encoding model and the language model were separately evaluated on the 
perceived speech test story to isolate their contributions to the decoding error 
(see Methods). At each word time t, the encoding model and the language model 
were provided with the actual stimulus word and 100 random distractor words. 
The encoding model ranks the words by the likelihood of the fMRI responses, 
and the language model ranks the words by the probability given the previous 
stimulus words. Encoding model and language model scores were computed 
based on the number of distractor words ranked below the actual word (100 
indicates perfect performance, 50 indicates chance level performance). To 
compare against the decoding scores from Fig. 1e, the word-level scores were 
averaged across 20 s windows of the stimulus. (a) Encoding model scores were 
significantly correlated with decoding scores (linear correlation r = 0.22–0.58, 
P < 0.05), suggesting that many of the poorly decoded time-points in Fig. 1e are 
inherently more difficult to decode using the encoding model. (b) Language 
model scores were not significantly correlated with decoding scores. (c) For 

each word, encoding model scores from 10 sets of distractors were compared 
to chance level. Most stimulus words with significant encoding model scores 
(q(FDR) < 0.05, two-sided t-test) for the whole brain also had significant encoding 
model scores for the speech network (80–87%), association region (88–92%), 
and prefrontal region (82–85%), suggesting that the results in Fig. 2c were not 
primarily due to the language model. Word-level encoding model scores were 
significantly correlated across each pair of regions (q(FDR) < 0.05, two-sided 
permutation test), suggesting that the results in Fig. 2d were not primarily due 
to the language model. (d) Word-level encoding model and language model 
scores were correlated against the word properties tested in Fig. 4d (* indicates 
q(FDR) < 0.05 for all subjects, two-sided permutation test). The encoding model 
and the language model were biased in opposite directions for several word 
properties. These effects may have balanced out in the full decoder, leading to 
the observed lack of correlation between the word properties and decoding 
scores (Fig. 4d).
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data collected during the decoder resistance experiment are available upon reasonable request, but were not publicly released due to concern that the data could 

be used to discover ways to bypass subject resistance. All other data are available at https://openneuro.org/datasets/ds003020 and https://openneuro.org/

datasets/ds004510.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender fMRI data were collected from 3 female subjects and 4 male subjects. Behavioral data were collected from 50 female 

subjects, 49 male subjects, and 1 non-binary subject. 

 

Sex and gender were not considered in the study design because we do not expect language decoding performance or 

language comprehension performance to depend on sex or gender. Sex and gender were determined based on self-

reporting.

Population characteristics fMRI data were collected from 7 healthy human subjects (3 female, 4 male) between 23 and 36 years of age, with normal 

hearing, normal or corrected-to-normal vision, and native English language proficiency. Behavioral data were collected from 

100 human subjects (50 female, 49 male, 1 non-binary) between 19 and 70 years of age, with native or fluent English 

language proficiency.

Recruitment fMRI subjects were recruited from the lab. Lab members were asked if they would like to participate in the experiment. The 

subjects used in this experiment were the lab members that volunteered to get scanned for at least 6 sessions. Because there 

are no experimental manipulations in this study and subjects are only performing naturalistic tasks, we do not expect this to 

have an effect on our results in any way. 

 

Behavioral subjects were recruited through the Prolific online platform. The only inclusion criteria were age (at least 18 years) 

and native or fluent English language proficiency. While the subjects chose whether to participate in the experiment, we do 

not expect this self-selection to have an effect on our results in any way.

Ethics oversight The experimental protocol was approved by the Institutional Review Board at the University of Texas at Austin. All subjects 

gave written informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For the fMRI experiment, no sample-size calculation was performed. Due to the large amount of data collected for each fMRI subject, the 

experimental approach does not rely on a large sample-size. The sample size of the fMRI experiment is comparable to those of previous 

decoding publications For the behavioral experiment, control group participants were expected to perform close to ceiling accuracy, so a 

sample size of 100 provides sufficient power to detect significance differences with test accuracies as high as 70% (G*Power, exact test of 

proportions with independent groups).

Data exclusions No data were excluded from the analysis.

Replication For the fMRI experiment, language decoding models were independently fit and evaluated for each subject, and the results of the study were 

consistent across subjects. This is effectively 3 separate and independent replications of the fMRI experiment. These sample sizes are similar 

to those reported in previous decoding publications. Exploratory decoding analyses were restricted to data collected while subject S3 listened 

to one test story. All exploratory analyses were qualitative. The analysis pipeline was frozen before we viewed results for the remaining 
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subjects, stimuli, and experiments. For the behavioral experiment, multiple-choice answers were written by a separate researcher who had 

never seen the decoder predictions to remove researcher bias. Bootstrap re-sampling was used to test for reproducibility.

Randomization For the fMRI experiment, subjects were not allocated into experimental groups. For the behavioral experiment, subjects were randomly 

allocated into experimental and control groups and blinded to group assignment.

Blinding For the fMRI experiment, subjects were not allocated into experimental groups. For the behavioral experiment, investigators were blinded to 

group allocation during data collection and analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Naturalistic task design

Design specifications Training data collection was broken up into 16 different scanning sessions, the first session involving the anatomical 

scan and localizers, and each successive session consisting of 5 or 6 spoken narrative stories from The Moth Radio Hour 

or Modern Love. Testing data was collected in 2 different scanning sessions for subjects S2 and S3, and 1 scanning 

session for subject S1.

Behavioral performance measures The study does not involve behavioral performance.

Acquisition

Imaging type(s) Functional

Field strength 3T

Sequence & imaging parameters Gradient echo EPI sequence, field of view = 220mm, matrix size = 84x84, slice thickness = 2.6mm, flip angle = 71°

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Functional data were motion corrected using the FMRIB Linear Image Registration Tool (FLIRT) from FSL 5.0. FLIRT was used 

to align all data to a template that was made from the average across the first functional run in the first story session for each 

subject. These automatic alignments were manually checked for accuracy.

Normalization Data were not normalized as we were looking for effects within individual subjects.

Normalization template Data were not normalized as we were looking for effects within individual subjects.

Noise and artifact removal Low frequency voxel response drift was identified using a 2nd order Savitzky-Golay filter with a 120 second window and then 

subtracted from the signal. To avoid onset artifacts and poor detrending performance near each end of the scan, responses 

were trimmed by removing 20 seconds (10 volumes) at the beginning and end of each scan.

Volume censoring There were no volumes with sufficient motion to warrant censoring. All subjects wore customized headcases to prevent 

excessive movement.
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Statistical modeling & inference

Model type and settings Our study follows a Bayesian decoding framework. In the model estimation stage, predictive voxel-wise encoding models 

were separately estimated for each subject using brain recordings collected while that subject listened to narrative stories. In 

the language reconstruction stage, brain recordings were collected while the subject performed a range of naturalistic tasks. 

A language model generates candidate word sequences, and the subject's encoding model evaluates the candidates against 

the brain recordings.

Effect(s) tested Decoding performance for each task was calculated by comparing decoder predictions to reference stimulus words. Paired t-

tests were used to compare decoding performance across tasks.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
Anatomical ROIs were defined for each subject using Freesurfer. Functional ROIs were defined for each 

subject using an auditory cortex localizer and a motor localizer.

Statistic type for inference
(See Eklund et al. 2016)

Decoding performance was calculated by comparing decoder predictions to reference stimulus words.

Correction All tests were corrected for multiple comparisons when necessary using the false discovery rate (FDR).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Voxel-wise encoding models were fit on a training dataset using L2-regularized linear regression to predict 

BOLD responses from semantic stimulus features. Semantic features of each stimulus word were extracted 

from a pre-trained GPT language model. Encoding models were used to decode novel BOLD responses in a 

test dataset. Prediction performance was computed using standard language similarity metrics on the 

decoder predictions and reference stimulus words.
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